Frage:
Impedanzanpassung mit Smith Chart und Beziehung zur Reflexion
Buck8pe
2018-07-12 20:01:01 UTC
view on stackexchange narkive permalink

Ich habe das Impedanzanpassungskapitel von Bowicks ausgezeichnetem RF Circuit Design-Buch gelesen und habe eine Frage.

Für diejenigen, die dieses Buch nicht gelesen haben (oder haben, sich aber nicht erinnern können!), werden in diesem Kapitel vor dem Umzug einige hilfreiche Beispiele mit L- und 3-Element-Matching-Netzwerken (sehr intuitiv, möchte ich hinzufügen) erläutert zu einer Einführung in das Smith Chart.

Er verwendet einige der früheren Übereinstimmungsbeispiele (gelöst mit Gleichungen) und zeigt, wie das gleiche Ergebnis mit dem Smith-Diagramm erzielt werden kann. Der Text weist darauf hin, dass das Hinzufügen reaktiver Elemente in Reihe mit einem Widerstand einfach ist Es geht darum, die entsprechende imaginäre Größe hinzuzufügen und Sie so entlang des konstanten Widerstandskreises zu bewegen. Ebenso kann das Hinzufügen reaktiver Elemente im Shunt mit der Leitfähigkeitsform des Smith-Diagramms erneut durch einfaches Addieren oder Subtrahieren erreicht werden. Wenn Sie ein kombiniertes Impedanz- und Leitfähigkeitsdiagramm verwenden, können Sie leicht Kontaktplannetzwerke modellieren. Dies ist natürlich genau das, was Sie für ein L-, Pi- oder T-Anpassungsnetzwerk benötigen. Wenn Sie eine Impedanz an eine andere anpassen müssen (eine wäre ein Konjugat), identifizieren Sie einfach die beiden Impedanzen im Diagramm (bei Bedarf normalisiert) und verfolgen einen Pfad zwischen den beiden nach den obigen Regeln.

Was ich nicht verstehe ist, wo ist der Reflexionskoeffizient in irgendetwas davon? Wenn ich das Diagramm richtig verstehe, ordnet es im Grunde den Reflexionskoeffizienten für eine normalisierte charakteristische Impedanz jedem möglichen (innerhalb des vernünftigen Rahmens) zu. Impedanz (oder Leitfähigkeit). Mit anderen Worten, die Diagramme "Bedeutung" beziehen sich auf Reflexion. Es scheint mir jedoch, dass die oben beschriebene Art der Impedanzanpassungsoperation einfach die Impedanzkarte (Leitfähigkeitskarte) verwendet und ihre Fähigkeit, komplexe Additionen und Subtraktionen auszudrücken, um sich von einem Punkt zum anderen zu bewegen, und dass jede Punktbeziehung zur Reflexion nicht wirklich ist relevant. Ich mache mir Sorgen, dass ich hier einen wichtigen Punkt verpasst habe. Ich hoffe, diese Frage ist nicht zu verwirrend.

Einer antworten:
Glenn W9IQ
2018-07-12 21:05:16 UTC
view on stackexchange narkive permalink

Sie haben Recht, dass eine eindeutige Korrelation besteht. Vielleicht hat Ihr Smith-Diagramm unten nicht die folgenden Skalen?:

enter image description here

Die Technik besteht darin, Ihren Kompass zum Messen von der zu verwenden Mitte des Diagramms auf die normalisierte Lastimpedanz (z L sub>). Verschieben Sie dann den Kompassstift an den in den obigen Skalen mit "CENTER" gekennzeichneten Punkt und lesen Sie den Reflexionskoeffizienten von der Skala an der Markierung des Kompasses ab.

Das ist interessant, ich wusste nicht, dass du das kannst. Aber ich denke, ich habe gefragt, wie der beschriebene Prozess der Impedanzanpassung den Reflexionskoeffizienten (der die geometrische Struktur des Diagramms definiert) beinhaltet. Es fällt mir schwer, die "tic-tac" -Methode zur Entdeckung des passenden Netzwerks mit dem Erbe der Charts s11 zu verbinden. Wenn das Sinn macht!


Diese Fragen und Antworten wurden automatisch aus der englischen Sprache übersetzt.Der ursprüngliche Inhalt ist auf stackexchange verfügbar. Wir danken ihm für die cc by-sa 4.0-Lizenz, unter der er vertrieben wird.
Loading...